Staff Research Highlight - Climate Change Impacts on Mountain Snowpacks
Research Highlight, Staff highlight Veljko Zaric Research Highlight, Staff highlight Veljko Zaric

Staff Research Highlight - Climate Change Impacts on Mountain Snowpacks

We’re happy to highlight a new publication co-authored by Aquanty’s senior data scientist, Dr. Andre Erler, focused on the expected impacts that climate change will have on snow depth in mountainous regions. This research relies solely on regional climate projections and employs a very similar model configuration (WRF version 4). The WRF simulations used in this paper are described in detail in Erler & Peltier (2017).

Read More
Staff Research Highlight - Future snow changes over the Columbia Mountains, Canada, using a distributed snow model
Research Highlight, Staff highlight Veljko Zaric Research Highlight, Staff highlight Veljko Zaric

Staff Research Highlight - Future snow changes over the Columbia Mountains, Canada, using a distributed snow model

This paper, co-authored by Andre Erler and researchers from the University of Northern British Columbia, investigates climate change impacts on snow depth using a distributed snow model called SnowModel. Snowmelt is an essential water source for communities, and seasonal snow accumulation in many regions is decreasing with each passing year. Water managers, communities, and policymakers can benefit from improved snow modeling forecasts to inform their decision making and understand vulnerabilities to their water supply systems.

Read More
Staff Research Highlight - Evaluating the significance of wetland representation in isotope-enabled distributed hydrologic modeling in mesoscale Precambrian shield watersheds
Research Highlight, Staff highlight Veljko Zaric Research Highlight, Staff highlight Veljko Zaric

Staff Research Highlight - Evaluating the significance of wetland representation in isotope-enabled distributed hydrologic modeling in mesoscale Precambrian shield watersheds

Aquanty’s very own Arghavan Tafvizi had her PhD research paper “Evaluating the Significance of Wetland Representation in Isotope-Enabled Distributed Hydrologic Modeling in Mesoscale Precambrian Shield Watershed” published in the Journal of Hydrology.

Read More
Staff Research Highlight - Comparative Valuation of Three Ecosystem Services in a Canadian Watershed Using Global, Regional, and Local Unit Values

Staff Research Highlight - Comparative Valuation of Three Ecosystem Services in a Canadian Watershed Using Global, Regional, and Local Unit Values

This new study, authored by Dr. Tariq Aziz, aims to compare ecosystem services values derived from three different sources: locally derived unit values specific to the Grand River Watershed, unit values from a regional database, and unit values compiled in the global Ecosystem Services Valuation Database (ESVD).

Read More
Staff Research Highlight - Accounting impacts of renewable energy expansions on ecosystem services to balance the trade-offs

Staff Research Highlight - Accounting impacts of renewable energy expansions on ecosystem services to balance the trade-offs

This new study, authored by Dr. Tariq Aziz, investigates the complex and often competing relationship between two vital components of our world: renewable energy systems and ecosystem services. Renewable energy is becoming increasingly popular as the demand for energy rises and appeal for fossil energy sources, such as oil, gas, or coal, diminishes.  

Read More
Physics and Ecology in Fluids: Modeling and Numerical Experiments
Research Highlight, News, Staff highlight Brayden McNeill Research Highlight, News, Staff highlight Brayden McNeill

Physics and Ecology in Fluids: Modeling and Numerical Experiments

Congratulations to our Senior Software Developer Derek Steinmoeller for publishing his latest book! 'Physics and Ecology in Fluids: Modeling and Numerical Experiments' was written by Dr. Marek Stastna, Professor, Dept. of Applied Math, University of Waterloo and his former graduate student Dr. Derek Steinmoeller, Scientist/Senior Software Developer at Aquanty Inc.

The book was written to help fill a perceived gap in the current understanding of the interactions between the motion of fluids in natural bodies of water and the population dynamics of the living organisms that reside therein. The book takes a novel approach to teaching by using the reader's laptop to run open-source simulation codes in a kind of 'virtual laboratory' to explore the movement and evolution of fluid flows and the organisms that are represented as tracers of the flow.

Read More