HGS RESEARCH HIGHLIGHT – Development of an integrated numerical flow model in the Prairie Environment

A recent publication by researchers at the University of Regina uses HydroGeoSphere to investigate the impact of climate variability and different groundwater withdrawal scenarios on groundwater levels in the Leech Lake aquifer. This paper provides an excellent introduction to the use of HGS in semi-arid prairie regions, making use of the built-in evapotransporation and snowmelt processes to estimate overall recharge rates under various climate scenarios (including extreme drought).

Read More

HGS RESEARCH HIGHLIGHT – Fully Coupled Surface–Subsurface Hydrological Modeling to Optimize Ancient Water Harvesting Techniques

We’re so proud that an entire chapter in the recently published “Handbook of Water Harvesting and Conservation: Case Studies and Application Examples” is dedicated to the modeling of ancient water harvesting techniques using HydroGeoSphere. In this chapter HGS was used to evaluate and optimize rain harvesting techniques across four case studies. Two of these case studies were from Chile, while the other two were in Ethiopia and Niger. The Chilean case studies evaluated the effectiveness of infiltration trenches (zanjas) in reducing surface runoff losses, promote recovery of natural vegetation and reduce land degradation. “In Ethiopia, the model was used to evaluate and optimize conservation practices with broad and narrow permanent beds, which are modified versions of locally called terwah and derdero systems.” And in Niger HydroGeoSphere models were used to evaluate several water harvesting techniques “includ[ing] scarification, zaï pits, and microcatchments like semi-circular or half-moon bunds (demi lunes)”.

Read More

HGS RESEARCH HIGHLIGHT – Hydraulic tomography analysis of municipal-well operation data with geology-based groundwater models

The study highlighted this week is focused on the estimation of aquifer parameters (e.g. hydraulic conductivity and specific storage) through inverse modeling of water-level data from observation wells collected during municipal well operations. The data is tested using four different conceptual geological models in HydroGeoSphere coupled to PEST, and the results indicate that this is a viable method of estimating reliable parameter values using existing data sets (providing a valuable new dimension to data collected during municipal well operations).

Read More